1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
| import numpy as np import matplotlib.pyplot as plt
def vandermonde_interpolation(x, y, x_values): n = len(x) coefficients = [] c = [] for i in range(n): coeff = [] for j in range(n): coeff.append(x[i]**j) coefficients.append(coeff) c.append(y[i]) A = np.array(coefficients) inv_A = np.linalg.inv(A) a = inv_A.dot(c) sum = 0 for i in range(n): sum += a[i] * x_values ** i return sum
def lagrange_interpolation(x, y, x_values): n = len(x) result = 0 for i in range(n): p = y[i] for j in range(n): if j != i: p *= (x_values - x[j]) / (x[i] - x[j]) result += p return result
def newton_interpolation(x, y, x_values): n = len(x) coefficients = [] for i in range(n-1, 0, -1): divided_diff = (y[i] - y[i-1]) / (x[i] - x[i-1]) coefficients.append(divided_diff) for j in range(n-i-1, 0, -1): divided_diff = (-divided_diff + coefficients[j-1]) / (x[n-j] - x[i-1]) coefficients[j-1] = divided_diff coefficients.append(y[0]) result = coefficients[0] for i in range(n-2, -1, -1): result = result * (x_values - x[i]) + coefficients[n-1-i] return result
def piecewise_linear_interpolation(x, y, x_values): n = len(x) result = 0 for i in range(n-1): mask = (x[i] <= x_values) & (x_values < x[i+1]) slope = (y[i+1] - y[i]) / (x[i+1] - x[i]) result += ((y[i] + slope * (x_values - x[i]))*mask) if (x_values == x[n-1]): result = y[n-1] return result
def piecewise_cubic_hermite_interpolation(x, y, yy, x_values): n = len(x) result = 0 for i in range(n-1): if ((x[i] <= x_values) & (x_values < x[i+1])): ai = (1+2*(x_values-x[i])/(x[i+1]-x[i]))*((x_values-x[i+1])/(x[i]-x[i+1]))**2 bi = (x_values - x[i])*((x_values-x[i+1])/(x[i]-x[i+1]))**2 ai1 = (1+2*(x_values-x[i+1])/(x[i]-x[i+1]))*((x_values-x[i])/(x[i+1]-x[i]))**2 bi1 = (x_values - x[i+1])*((x_values-x[i])/(x[i+1]-x[i]))**2 result += (y[i] * ai +yy[i] * bi +y[i+1] * ai1 +yy[i+1] * bi1) if (x_values == x[n-1]): result = y[n-1] return result
def target_function(c,d,e,f,x): return [(c*np.sin(d*val)+e*np.cos(f*val)) for val in x]
def derivative_function(c,d,e,f,x): return [(c*d*np.cos(d*val)-e*f*np.sin(f*val)) for val in x]
def compute_average_error(f, g, x_values): return sum([abs(f[i] - g[i]) for i in range(len(x_values))]) / len(x_values)
a = float(input()) b = float(input()) c = float(input()) d = float(input()) e = float(input()) f = float(input()) num_samples = int(input()) num_experiments = int(input()) x_values = [a + (b - a) * i / (num_samples - 1) for i in range(num_samples)] ys = target_function(c,d,e,f,x_values) yy = derivative_function(c,d,e,f,x_values)
experiment_points = [a + (b - a) * i / (num_experiments - 1) for i in range(num_experiments)]
vandermonde_interpolated = [vandermonde_interpolation(x_values, ys, val) for val in experiment_points] vandermonde_error = compute_average_error(target_function(c,d,e,f,experiment_points), vandermonde_interpolated, experiment_points)
lagrange_interpolated = [lagrange_interpolation(x_values, ys, val) for val in experiment_points] lagrange_error = compute_average_error(target_function(c,d,e,f,experiment_points), lagrange_interpolated, experiment_points)
newton_interpolated = [newton_interpolation(x_values, ys, val) for val in experiment_points] newton_error = compute_average_error(target_function(c,d,e,f,experiment_points), newton_interpolated, experiment_points)
piecewise_linear_interpolated = [piecewise_linear_interpolation(x_values, ys, val) for val in experiment_points] piecewise_linear_error = compute_average_error(target_function(c,d,e,f,experiment_points), piecewise_linear_interpolated, experiment_points)
piecewise_cubic_hermite_interpolated = [piecewise_cubic_hermite_interpolation(x_values, ys, yy, val) for val in experiment_points] piecewise_cubic_hermite_error = compute_average_error(target_function(c,d,e,f,experiment_points), piecewise_cubic_hermite_interpolated, experiment_points)
fig = plt.figure(num = 1,dpi = 120) ax = plt.subplot(1,1,1) ax = plt.gca() ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left')
ax.spines['bottom'].set_position(('data', 0)) ax.spines['left'].set_position(('data', 0))
x=list(np.arange(a,b,0.01)) y=[] y1=[] y2=[] y3=[] y4=[] y5=[] for i in range(len(x)): y = target_function(c,d,e,f,x) y1.append(vandermonde_interpolation(x_values, ys, x[i])) y2.append(lagrange_interpolation(x_values, ys, x[i])) y3.append(newton_interpolation(x_values, ys, x[i])) y4.append(piecewise_linear_interpolation(x_values, ys, x[i])) y5.append(piecewise_cubic_hermite_interpolation(x_values, ys, yy, x[i]))
ax.plot(x,y,label = "Target Function",color ="blueviolet") ax.plot(x_values,ys, marker = "*",linestyle = "", color = "blueviolet") ax.plot(x,y1,label = "vandermonde interpolation\n average error=%f"%vandermonde_error,color ="red") ax.plot(experiment_points, vandermonde_interpolated, marker = "o",linestyle = "", color = "red") ax.plot(x,y2,label = "lagrange interpolation\n average error=%f"%lagrange_error,color ="yellow") ax.plot(experiment_points, lagrange_interpolated, marker = "o",linestyle = "", color = "yellow") ax.plot(x,y3,label = "newton interpolation\n average error=%f"%newton_error,color ="green") ax.plot(experiment_points, newton_interpolated, marker = "o",linestyle = "", color = "green") ax.plot(x,y4,label = "piecewise linear interpolation\n average error=%f"%piecewise_linear_error,color ="blue") ax.plot(experiment_points, piecewise_linear_interpolated, marker = "o",linestyle = "", color = "blue") ax.plot(x,y5,label = "piecewise cubic hermite interpolation\n average error=%f"%piecewise_cubic_hermite_error,color ="purple") ax.plot(experiment_points, piecewise_cubic_hermite_interpolated, marker = "o",linestyle = "", color = "purple")
plt.legend() plt.show()
|